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ABSTRACT: We describe a framework for estimating the Pharmacodynamics Pharmacokinetics

humean dose at which achemical significantly alters a biological Doserto-Conoentration
pathway in vivo, making use of in vitro assay dataand an in vitro- Adverse Effect S 207 -~ Scaling Function (C,/DR)
derived pharmeacokinetic model, coupled with estimates of moa < [ == Probabity Distribution
population variability and uncertainty. The quantity we calcu- Key Events

late, the biological pathway altering dose (BPAD), is analogous Todaity Path

to current risk assessment metrics in that it combines dose - i A Ml ——

response data with analysis of uncertainty and population gt y\

variability to arrive at conservative exposure limits. The analogy Probabity Distibution i

is closest when perturbation of a pathway isa key event in the mlsl }és{}ys for Dose ™ Populations
mode of action (MOA) leading to aspecified adverse outcome. | Bi;:f;iia:n;?t?\ilay BN

Because BPADs are derived from relatively inexpensive, high- A \
throughput screening (HTS) in vitro data, this approach can be / /

applied to high-throughput risk sssessments (HTRA) for B‘°‘gﬂf@;ﬁgmf‘y(ggzvg)““g 2

thousands of data-poor environmental chemicals. We envisage Probability Distribution @7 Plasma Protein
the first step of HTRA to be an sssessment of in vitro nteinsie - Binding

concentration - resporse relationships across biologically im-
portant pathways to derive biological pathway altering concentrations (BPAC). Pharmacokinetic (PK) modeling is then used to
estimate the in vivo doses required to achieve the BPACs in the blood at steady state. Uncertainty and variability are incorporated in
both the BPAC and the PK pararmeters and then combined fo yield a probebility distribution for the dose required to perturb the
critical pathway We finally define the BPADL as the lower confidence bound of this pathway-altering dose. This perspectiveoutlines
a framework for Lsing HTRA fo estimate BPAD values; provides eamples of the use of this approach, including a comparison of
BPAD values with published dose - response data from in vivo studies; and discusses challenoges and alternative formulations.
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TANTRODUCTION

Chemical risk assessment and risk management require infor-
mation on hazard, dose response, use, and exposure 10 make
decisions protective of human health and the environment. One
objectiveofachemicalrisk assessmentiis to identifyexposurelevels
with a ressonable certainty of no harm. Exposures resulting from
the use of a chemical that are below these estimated levels are
presumed to have a reasonable certainty of no harm!' or to be
without appreciabledeleteriousefiects during a lifetime? Hazard-
based limits currently used to inform risk managerment include
quantitiessuch as the referencedose (RfD) for noncancer effects.
An RfD is generally derived by estimating the lowest human-
relevant point of departure (POD) which may be a NOAEL (no
observed adverse efect level) or BMD (benchrmark dose) froma
st of laboratory animal studies, commonly in rodent and non-
rodent species. These are then divided by default factors often in
the rangeof 100 to 1000 to accountfor uncertaintyin cross-species
extrapolation, possible database deficiencieswhich might lead to a
failure to identify the most sensitive endpoint, and variability
across human populationsand life-stages.Whereavailable,human
data (eg., from epidemiological studies) is incorporated into
estimates of acceptableexposures.

EPA defines an RfD as representing “... the quantity of a
substance which if absorbed on adaily basis over alifetime, is not
expected to pose significant risk of adverse health effects.”
Alternatives to an RfD, used in certain decision contexts, include
allowable daily intake (ADI) and threshold of toxicological
concern (TTC).* An important component of many risk assess-
ments is the identification of the mode of action (MOA) leading
to the critical effect, which is the adverse effect with the lowest
NOAEL or BMD.>" 7 Identifying the MOA is important because
some MOAs are known to operate in model species but not
humans (or vice versa), meaning that the related adverse effect
could be discounted (or would have to be accounted for) when
determining the human RfD. In addition, some MOA (such as
genotoxic carcinogenicity) are assumed to imply no safe thresh-
old dose; therefore, a different risk assessment approach is called
for. An important link between MOA and pathway-based
analyses is the tenet that it is sometimes possible o relate
MOA key events with perturbations of specific pathways.

Current risk assessment approaches for the mygjority of
chemicals face meny challenges? including heavy reliance on
data from animal studies. In this perspective, we outline one
possible alternative formulation for determining pemmissible
exposure levels from in vitro high-throughput screening (HTS)
data and informatic analysis. The resulting information could
serve a5 a surrogate for acceptable dose levels derived from
animal toxicity studies until such studies are available. Such
formulations are desirable because there are thousands of
environmental chemicals for which animal data is limited or
not available? a situation that is unlikely to change in the near
future. Any alternative to the current human health risk assess-
ment approach has to meet several criteria. First, it should be
based on an understanding of the modes or mechanisms leading
to toxicity, specifically in humans. Second, it should yield relevant
dose - response predictions that can be used for setting pemmis-
sible hurman exposure levels. Third, it should be at lesst as health
protective as current gpproaches without imposing unnecessarily
strict limits on chemical use.

Over the past decade, in vitro toxicity testing approaches have
been widely implemented. In these approaches, chemicals are
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evaluated using asingle or a battery of in vitro assays that probe
biological pathways relevant to toxicity. In vitro toxicity testing
has been advocated for use in the evaluation of environmental
chemicals' and is being implemented at the U'S. EPA.and NIH
through their ToxCast' "2 and Tox21"™' programs. The invitro
toxicity testing approach has several key advantages: (1) the cost
is orders of magnitude less than that for animal testing; (2)
human molecular targetsand cell systems can be directly studied;
and (3) hundreds or thousands of chemicals can be analyzed in
parallel. Using HTS in vitro methods in hazard assessment
screening would address the question, is there a mechanism
by which a chemical can lead to a particular adverse efect?
Assays are typically run in concentration - response format;
therefore, one can estimate the relative potency (i.e., effective
concentration) of diferent chemicals to perturb biological
pathways.'?

Here, we couple the ability of in vitro assays to quantitatively
characterize the pharmacodynamics (PD) of a chemical in con-
centration - response mode with new high-throughput methods
for estimating the corresponding pharmacokinetics (PK) of a
potential toxicant ' By combining these two typesof information,
we can estimate the external dose that would be required to
perturb a biological pathway. In order to complete the analogy
with standard risk assessment approaches, we need to incorporate
uncertaintyand variabilityinto themodel. Onecan then calculatea
provisional acceptable exposure level at the low end of the
distribution of the pathway-altering dose accounting for uncer-
taintyand variability.We define this valueas the biological pathway
altering dose or BPAD. The overall process of estimating the
BPAD we define as high-throughput risk assessment (HTRA).

The goals of this perspective are to outline a framework for
using HTRA to estimate BPAD values; to provide examples of
the use of this approach, including comparisons of BPAD
values with published lowest effect levels (LELs) and no effect
levels (NELs) from animal toxicity studies; and to discuss
challenges and alternative formulations. This perspective
proposes and evaluates a framework for HTRA and identifies
incomplete or unresolved issues, a5 a first step toward devel-
oping an HTRA model for decision-making. The immediate
goal of HTRA as described here is not to replacestandard risk
assessment methods, but instead to provide input into provi-
sional risk assessments for data-poor chemicals. These provi-
sional estimates can then be used to prioritize further study of
specific chemicals and could be updated as this new informa-
tion is collected.

T HTRA FRAMEWORK OUTLINE
Our initial goal is to estimate chemical-specific biological
pathway-altering doses or BPADs. A BPAD is tied to a particular
biological pathway and therefore is analogous {0 an estimate of a
mechanism or MOA-specific LEL or NEL, with the addition of
uncertainty and population variability estimates. Although we do
not address the equivalent problem of estimating exposure ina
high-throughput manner, we recognize that this metric is of
comparative importance. Here, we simply outline the key points
of the HTRA-BPAD approach, which are illustrated in Figure 1.
Implementation details are given in subsequent sections.
1. HTRA is built around biological pathways whose structure
is derived froma large body of in vitroand in vivostudies. A
number of publicly available biological pathway data-
bases'® - 18 exist to guide a selection for use in HTRA.

452 dx.doi.org/10.1021/tx100428e [Chem. Res. Toxicol. 2011, 24, 451-462

ED_001487_00006405-00002



Chernical Research in Toxicology

Pharmacodynamics

Adverse Effect
[MoA < ] ”

Key Events

Pharmacokinetics

-

Toxicity Pathway

BPADL

v

i

for Dose N Populations
H says that Activates PK Model
) Biological Pathway

TS

Probability Distribution

Dose-to-Concentration
— Scaling Function (C,/DR)
Probability Distribution

Biological Pathway Activating
Concentration (BPAC)
Probability Distribution

. Plasma Protein
Intrinsic Binding

Clearance

Figure 1. Schematic of the high-throughput risk assessment (HTRA) process, coupling in vitro assay data quantitatively characterizing the
phameacodynamics (PD) of a chemical with high-throughput methods for estimating the corresponding pharmacokinetics (PK) of a potential
foxicant. See text for a full description of the HTRA process.

2. For HTRA, we want to focus on toxicity-related biological
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pathways, i.e., those which, when significantly altered by
chemical exposure, are likely 10 lead {0 adverse effcts
invivo."® The distinction between all pathwaysand toxicity-
related pathways is analogous to the distinctions between
observations leading to NELs and NOAELs in traditional
toxicity testing. An important area of research involves
determining linkages between pathways and adverse ef-
fects. We purposely avoid the term “toxicity pathway”
because there is no real distinction between these and
normal biological pathways. Operationally, one way we
define “toxicity-related pathways” is by finding associations
(either using statistical technigques or from detailed mechanistic
analysis) between the perturbation of a pathway or processand
the development of adverse outcomes.

. Foreach pathway, weselect a representativeset of targets to

probe and develop in vitro assays {0 messure effects related
to those targets. For the examples given here, these targets
were selected partly by expert judgment and partly by
the availability of offtheshelf high-throughput assays.
Although assays derived from other species that share
significant sequence similarity at the specific target gene
can also be used, we would primarily focus on human
targetsand cells for human risk assessment. Assayscanbeas
simple as binding to asingle protein or as complex as whole
genome microarrays or other genome-scale messurements.
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4. All assays must be run in concentration - response format

in order to yield values for the BPAC (biological pathway
altering concentration).

. 1t may be necessary to run several assays associated with a

pathway and use a systems-level model to integrate the
resulting PD data for estimating BPAC." This model may
need to account for some assays being overly sensitive
(vielding false positives) and some being under-sensitive
(vielding false negatives.) This model should also estimate
the PD-related uncertainties and population variability®
and must characterize the population distribution of the
BPAC and its uncertainty using probability distributions.

. Population-PK modeling is used to estimate the external

dose through the relevant route of exposure that would lead
to the internal BPAC (dose-to-concentration scaling
function). The PK model must also estimate PK-related
uncertainties and variability, and then vield a probability
distribution for the dose-to-concentration scaling function.
In the case of the examples provided here, an oral dose
leading to the internal BPAC was used.

. The PD and PK probability distributions are then com+

bined to yield a probability distribution of the dose at which
the chemical would significantly perturb the biological
pathway. We calculate a mean value and confidence inter-
vals from this distribution and set the BPAD to be the lower
dose boundary of the confidence interval.

dx.doi.org/10.1021/tx100428e [Chem. Res. Toxicol. 2011, 24, 451-462
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Figure 2. Example concentration - response curves for Bisphenol A in two estrogen receptor assays from the ToxCast program. These assays use
multiplexed reporter gene technology in a transactivating mode (left) and cis-activating mode (right) 2 The y-axis is in units of fold-change.
Determination of the ACs, (denoted by the horizontal bar with error bands) and associated confidence intervals factor into uncertainties in the

estimation of the BPAC.

OLOGICAL PATHWAYS AND THEIR LINKAGE TO

=
ADVERSE BEFFECTS

Biological pathways are a key connection between MOA-
based risk assessment and HTRA when they are mechanistically
linked to key events in toxicity modes of action.?! Pathway-level
perturbations can be assessed by festing chemicalsin vitrousinga
suite of assays that measure molecular targets and downstream
consequences in the pathway, eg., binding to key enzymes or
receptors, or differential regulation of downstream genes or
proteins. By running assays in concentration - response format,
one can derive a characteristic concentration (eg., ACsy or
concentration at which activity is 50% of its maximum) for each
chemical - assay pair. Additionally, in contrast with in vivo stud-
ies, it is possible (at least inselected cases) to measure responseat
arbitrarily closely spaced concentrations and to measure re-
sponse down fo very low concentrations. This eliminates the
need to perform low-dose extrgpolation using an assumed
model: the low dose end of the curve is directly measured.
Figure 2 shows examples of concentration - response data, in this
case derived from a pair of estrogen receptor assays.?

In some instances, there may be a direct link known between
an MOA and a corresponding pathway. An example is cholines-
terase inhibition. The in vivo key event is measurable cholines-
terase inhibition inablood or tissue sample. The invitro pathway
perturbation is measured by inhibition of cholinesterase activity
inacell-free or cell-based assay. A more complex examf!e is liver
hypertrophy driven by peroxisome proliferation.?~2° in vivo,
histopathology can clearly detect peroxisome proliferation.
In vitro, numerous assays can messure activity in the underlying
peroxisome proliferator-activating receptor (PPAR) pathway.

TINVITRO
Al

FEENING, BIOLOGICAL PATHWAYS,
3 THE BIOLOGICAL PATHWAY-ALTERING CON-
TRATION (BFAC)

In the first step of HTRA, we use HTS in vitro assays to
messure the extent of chemical-induced perturbation of a
biological pathway as a function of concentration. As described
above, assays can measure direct binding to key targets, down-
stream changes of specific biomarkers, or cellular consequences
such as cell shape changes or cell death. In some cases, it will be
possible to use a single assay to measure pathway perturbation
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(eg., cholinesterase inhibition), while in others one may need to
integrate over the results of multiple assays. The use of micro-
arrays to estimate pathway perturbation is an alternative or
complementary approach for cases where relatively few chemi-
cals need to be examined?® HTS-besed pathway-based assays
offer an alternative and promising; technology for screening
thousands of chemicals in parallel

A significant advantage of the current HTS assays is that the
majority can be run against hurman targets or in human cells. This
eliminates the need for crossspecies extrapolation, but still
requires in vitro 1o in vivo extrapolation. There are many ways
to estimate the BPAC, but it remains a challenge to determine
which is most appropriate. For the illustrative examples pre-
sented below, we used asimple method for estimating the BPAC.
This approach takes the collection of assays that map to pathway
genes or relevant cellular phenotypes and sets the BPAC for the
specified chemical to be the minimum ACs, for any of those
assays (See Figure 2).

Finally, we need to address uncertainty and variability in our
estimate of the BPAC. It is desirable to separately characterize the
population variability of the BPAC and its uncertainty because
risk assessment uses variability and uncertainty information in
different ways. Ideally, population variability information would
be available for this analysis, along with a characterization of the
uncertainty about that variability. For our examples, and a5 a
suggested default in the absence of an estimate of population
variability, we assumed that the population distribution of the
BPAC is log-normal and that the ratio of the geometric mean (or,
equivalently, the median because of the assumption that the
population distribution is log-normal) to the first percentile of
the population distribution is (10)"2. This factor is motivated by
partitioning the conventional 10-fold uncertainty factor for
variability among people into equal-sized portions due to phar-
macodynamics and pharmacokinetics. Not all regulatory bodies
use the same partition, and this particular factor is intended for
illustration, not prescription. Alternative approaches 10 assessing
variability”® have been based on estimates of appropriate var-
iances from collections of human data.

We do not have astatistically rigorous characterization of the
uncertainty about the parameters of this assumed population
distribution, but for illustrative purposes, we assume the loga-
rithm of the population median and log-scale standard deviation

454 dx.doi.org/10.1021/tx100428e [Chem. Res. Toxicol. 2011, 24, 451-462
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are known to within about a factor of 2 (strictly, that the 1stand
99th percentiles of the uncertainty distribution are 4-fold gpart
and that the uncertainty distribution is log-normal). Further
work needs 1o be done to better characterize the variability and
uncertainty of these parameters.

T FROM INVITRO CONCENTRATION TO INVIVO DOSE:
FEVERSE TOXICOKINETICS

This section addresses the task of estimating the in vivo dose
that corresponds to the BPAC. A variety of PK models can be
used to estimate internal concentration from external dose (or
exposure). These models can be reversed to vield the dose
(exposure) corresponding to the BPAC. For the present pur-
pose, we require a method that is general enough to be used
on a large number of chemicals. The most detailed PK models,
usually called physiologically based phammacokinetic (PBPK)
models % represent distribution, metabolism, and excretion of
a chemical using multicompartment models that account for
partitioning between multiple organs and tissues. One challenge
to using detailed PBPK models lies in identifying the structure of
the model and the values of the corresponding coefficients for
each chemical. Generatinga complete “validated” model can take
vears and require the generation of a significant amount of
chemical-specific experimental data.

An alternative to detailed PBPK modeling is to use simpler
models that make conservative assumptions and require a small
number of parameters whose estimates are amenable 1o high-
throughput data generation. One class of models is purely
computational, where all parameters are computationally gener-
ated, usually through quantitative structure activity relationship
(QSAR) models. These models have been used to estimate body
burden of chemicals that are not metabolizzd but which
bicaccumulate® Here, we focus on an alternative approach
more suitable to chemicals that are largely eliminated through
metabolism and renal excretion, which is called reverse toxico-
kinetics (RTK) or reverse dosimetry.'>*2% |n this approach, we
use a one compartment model and make default assumptions
such as chemicals are eliminated wholly through metabolismand
renal excretion; renal excretion is a function of the glomerular
filtration rate and the fraction of unbound chemical in the blood
(i.e,, no active transport); and there is 100% oral absorption.
Using these assumptions in our published RTK analysis,'® we
only required two experimental chemical-specific parameters to
generatean estimate of the plasma concentration of the chemical
at steady state per unit dose. These are the rate of disappearance
of parent via hepatic metabolism (called intrinsic clearance) and
fraction bound (or conversely unbound) o plasma proteins.
Both of these parameters can be messured experimentally in a
relatively high-throughput manner.

The result of this effort is a chemical-specific ratio of the
concentration at steady state (C,) divided by the dose rate (DR),
yielding a concentration-to-dose scaling factor with units
of uM/{mg/kg/day). One simply divides the BPAC by the
Cs/ DR ratio to calculate the steady-state dose required to yield a
steady-state BPAC. The estimate of the Cy/DR ratio implicitly
contains uncertainties; for instance, the assumption of 100% oral
absorption and the assumption that the concentration at thesite
of action will equal the concentration in plasma. There are also
uncertainties in the measurements of experimental values for
fraction unbound and intrinsic clearance. Population variability
in PK arises from several factors including genetic differences in
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xenobiotic metabolizing enzymes and heterogeneity of liver
mess. The PK software application we use (SimCyp®*°®) allows
us to directly include some sources of population variability, but
the current model does not explicitly account for model and
parameter uncertainty.

T FROM ACTIVITY DOSE ESTIMATES TO THE BIOLO-
GICAL PATHWAY-ALTERING DOSE (BFAL: INCOR-
FORATING UNCERTAINTY AND VARIABILITY

We have described how to estimate the concentrationat which
abiological pathway of interest isactivated (BPAC), plusthe Cy/
DR ratio which scales internal concentrations to oral doses. The
dose that corresponds to the BPAC is simply BPAC/Cs/DR.
While this gives a central estimate, we need to account for
uncertainties and variability in each of the estimated values and
their resulting ratio.

Our PD estimates are subject to uncertainty. For the in vitro
assays, we know that there is statistical noise in the data, which
will lead to uncertainties in estimates of the ACsy. For some
pathways, there may be important biological activity well below
the ACs, while for other pathways, relevant in vivo effects will
only occur when the assay target is fully activated (or inhibited),
well above the AC5;. Assays in some cases will vield false positive
or false negative results due toavariety of assay artifactswhich are
not always easy to detect.* Further, assays currently in use may
not detect the most sensitive signal of pathway activation.

Likewise, the estimates of PK parameters are uncertain. There
are uncertainties in the estimates of the experimental parameters
such as intrinsic clearance and plasma protein binding. Any PK
model will have to make assumptions about the structure of the
model used for a given chemical (e.g., in number and types of
compartments). For instance, our RTK method assumes that
estimated blood concentrations are a good surrogate for the
in vitro media/buffer concentrations in the HTS assays.

There is population variability surrounding PD, for example,
due to the genetic variation of an enzyme or receptor to which
the chemical binds and which then triggers downstream path-
way-based processes. As already mentioned, there is significant
PK population variability, for instance in xenobiotic metabolism,
due to intrinsic genetic variation, and variability due to lifestage,
health status, and other factors.

Since we expect population variability, and uncertainty about it,

inboththeBPACandC/ DR, thesamewillbetruefortheirratio,

the BPAD. For purposes of hazard characterization, we propose to
set the critical value of the BPAD fo correspond to a small
percentile, say %, of the population distribution of the BPAD
(designatedthe BPAD o, because (100 - p)% of the population
would exceed that level, and therefore, in somesensepowouldbe
protected from that level of exposure) and use that level and its
lower 95% confidence bound (BPADLyy,) to charecterize a
chronic dose suggested to be of concem. Technically, BPAD o0,
is a permissible exposure level that accounts for population
variability, and BPADLq, is the permissible exposure level
additionallyaccounting for uncertainty. For theexamplespresented
in the next section, we assume the population distribution of the
Cs/DR is log-nonmmal, and we estimate the population geometric
standard deviation from the confidence limits. The ratio BPAC/
Cs/DR is then also log-nonmal. As for the BPAC, we presunme to
know the parametersof the population distribution of C/ DR (the
geometricmeanandstandard deviationon the logscale) towithina
factorof 2. Wefocuson the BPADg and useMonte Carlosampling

455 dx.doi.org/10.1021/tx100428e [Chem. Res. Toxicol. 2011, 24, 451-462
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to generate a confidence interval for the BPADy, allowingus to
calculate BPAD L.

The center of the BPAD distribution is analogous to an LEL,
although it is explicitly the dose at which one would expect to see
50% of maximal perturbationfor the pathway. The BPADL for a
particular pathway is analogousto a NEL (no effect level) divided
by safety factors. The NOAEL from an animal study is the lowest
NEL over all efects that are consideredby a particularregulatory

agencytobeadverseandrelevant. TomakeanH TRAanakalg 4&lo %WAT@TU}{WW

the NOAEL and the NOAEL-related RD, we need to classify
pathway perturbationsas adverse or not. Adversity isan important
issue requiringmore researchand eventuglly policy developmentto
identify the relevant, adverse minimum BPADL for a chemical or
stressor. Initially, we foresee the primary utility of HTRA in
prioritization of chemicals for targeted testing based on pathway-
derived BPADL valuesand would do this based on our confidence
that a particular pathway's perturbation is linked to adversity.

T EXAMPLE 1: BISPHENOL A BSTROGENICITY INVITRO
VS IN VIVO REPRODUCTIVE TOXICITY

As a first example, we consider the estrogenicity of Blsphenol
A (BPA\) relative to the reproductive toxicity of BPA.3>% BPA is
a high production volume (HPV) chemical widely used in
manufacturing polycarbonate plastics and epoxy resins, and
humans appear to be exposed primarily through food packaging
uses.®” This is a useful first illustration of the BPAD approach
because of the direct link between activity at a single molecular
target, the estrogen receptor (ER) ESR1 (formerly known as
ERalpha) that can be measured in vitro, and an in vivo efect
observed inarat reproductive model. BPA in vitro pharmacology
identifies it as an ER agonist in all six relevant ToxCast assays
(listed in Table 1). If we assume that the molecular key event
leading to positive findings in female rats from the multigenera-
tion reproduction test is due to BPA estrogenicity, then the ER
BPAD should provide an estimate of the corresponding in vivo
LEL and NEL. The ToxCast assays provided six ER agonist or
binding AC50 values ranging from 0.6 to 1.7 uM."? To calculatea
conservative BPAD, the lowest ToxCast AC50 is selected (0.64
UM for Attagene Factorial cis ERE assay). We then consider
population variability in both the BPAC and the C/DR, and the
uncertainty about estimates of the population parameters. The
assay results used here are not directly amenable to producing
estimates of population variability; however, it has become
standard practice to quantify variability in the human population
with a 10-fold uncertainty factor, comparing the population
median to a lower quantile (for our purposes, the 1%ile). This
is generally further divided into a PD and PK component® For
illustration purposes, we next estimate the PD variability, while
the PK variability is explicitly incorporated in the SImCyp
confidence intervals. For a log-normally distributed variable, this
corresponds to astandard deviation on the log scale 0f 0.49. The
median of the estimated population distribution of C/DR is
0.29, with an estimated standard deviation on the log scale of
0.39. The uncertainty of these values is not currently quantified,
but for illustrative purposes, we assume the values are relatively
uncertain, with the coefficient of variation of the uncertainty
distributions at about 36% (corresponding to knowing the value
of the parameter to within about a factor of 2). Monte Carlo
sampling from log-normal distributions around the estimated
population parameters gives a BPADyy 0f 044 mg/kg/ day, with
lower one-sided confidence limit, BPADLgg, 0f 0.16 mg/kg/day.
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In vivo, Tyl et al. found diminished female reproductive
performance and decreased ovarian weight in the rat reproduc-
tion test at 500 mg/kg/day and an NEL of 50 mg/kg/day. The
NEL is adjusted for uncertainty/variability (NEL/100) to yielda
value of 0.5 mg/kg/ day, close to the invitro ER BPADL g, 0f 0.16

mg/kg/day.
T EXAMF

= CARFE ACTIMITY INVITRO

To further illustrate the idess in the previous sections, we
applied HTRA to aset of conazole fungicides. One concern with
conazoles is that many of them cause a variety of liver toxicities in
rodents, including hypertrophy and tumors.®*° One pathway
activated by most conazoles, and believed to be involved in these
liver pathologies, is the constitutive androstane rec%ptor/ preg-
nane X receptor (CAR/PXR) signaling pathway*#' In the
ToxCast project, "2 we evaluated 14 conazoles in a large battery
of assays, many of which map to the CAR/PXR pathway. Wealso
converted in vitro AC50 values from the ToxCast assays
(concentration response) to equivalent in vivo values for humans
using RTK. As described above, we calculated the BPAD
distribution corresponding to the lowest ACs, across the
CAR/PXR-related assays in ToxCast, listed in Table 1. We then
compared the BPAD distribution with liver hypertrophy-related
LEL, NEL, and NEL/100 values derived from rat and mouse
2-year chronic/cancer studies. Liver hypertrophy alone is not
considered an adverse effect that would lead to a LOAEL (lowest
observed adverse effect level) and NOAEL,; therefore, in this
case, we used LEL and NEL (lowest and no effect levels,
r&spectl 4g/) Using data from both mouse and rat chronic
studies;*** we identified the lowest dose at which either liver
hypertrophy or fiver weight incresse was observed, yielding the
liver-hypertrophy LEL. VWe then set the corresponding NEL to
be the dose below the LEL or LEL /10 if the effect was observed
at the lowest dose tested.

The results of thiscomparison areshown in Figure 3. Foreach
chemical, we show abox corresponding to the variability-derived
(1% - 99%) confidence interval around the median BPAD and
whiskers giving the uncertainty-derived 95% confidence intervals
around theends of the uncertainty range. The BPADLyg valle is
designated with a red circle; the LEL with a blue box; the NEL
with a gray triangle; and NEL/100 with a red triangle. We also
show the estimated exposure levels based on food residues, all of
which are well below the BPAPLyy values. Note that for two
chemicals (iprodione and imazalil ), exposure estimates were not
available.

A first observation is that in most cases the BPADL g is within
a factor of 10 of the NEL/100, which lends confidence o the
use of this approach in more general cases. Using a Kendall
rank-correlation test, we see a significant correlation between
BPADLggand NEL/100 (p=0.025). Thisisof particular interest
given wide uncertainties going into both estimates. Second, in 9
of 14 cases, the BPADLy is at or below the NEL/100. This
suggests that we can potentially use the BPADLgg to yield a first
order estimate for an upper permissible chronic exposure level
in the alsence of animal data.

T DISCUSSION

Here, we have presented a framework to investigate the
application of in vitro pathway-based risk assessment for envir-
onmental chemicals. BPADs are in vitroanalogues of in vivo point
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Table 1. Description of ToxCast Assays Used in Examples for ER Activity Related to Reproductive Toxicity and CAR/PXR

Activity Related to Liver Hypertrophy
aay gene description

ATG_ERa_TRANS ESR1 estrogen receptor 1 [human]

ATG_ERE_CIS ESR1 estrogen receptor 1 [human]
NCGC_ERalpha_Agonist ESR1 estrogen receptor 1 [human]
NVS_NR_bER ESR1 estrogen receptor 1 [bovine]
NVS_NR_hER ESR1 estrogen receptor 1 (mutant) [human]
NVS_NR_mERa ESR1 estrogen receptor 1 [mouse]

ATG_CAR_TRANS

NVS_NR_hCAR_Antagonist

ATG_PXR_TRANS

NCGC_PXR_Agonist_human

NVS_NR_hPXR
ATG_RXRb_TRANS
ATG_RXRa_TRANS
NCGC_RXRa_Agonist
CLZD_ABCB1
CLZD_ABCG2
CLZD_CYP286
CLZD_CYP2C9
CLZD_CYP2C19
CLZD_CYP3Ad
CLZD_GSTA2
CLZD_UGT1A

CLZD_SLCO1B1

CLZD_SULT2A1

ATG_HNF4a_TRANS

ATG_PBREM_CIS

CAR/NR1I3 nuclear receptor subfamily 1, group |,

member 3, Constitutive androstane receptor [human]

CAR/NR1I3 nuclear receptor subfamily 1, group |,

member 3, Constitutive androstane receptor [human]

PXR/NR1I2, nuclear receptor subfamily 1, group |,
member 2, Pregnane-X receptor [human]

PXR/NR1I2, nuclear receptor subfamily 1, group |,
member 2, Pregnane-X receptor [human]

PXR/NR1I2, nuclear receptor subfamily 1, group |,
member 2, Pregnane-X receptor [human}]

RXRB - retinoid X receptor, beta [human]

RXRA - retinoid X receptor, alpha [human]

RXRA - retinoid X receptor, alpha [human]

ABCB1 - ATP-binding cassette, subfamily
B (MDR/TAP), member 1 [human]

ABCG2 - ATP-binding cassette, subfamily
G (WHITE), member 2 [human]

CYP2B6 - cytochrome P450, family 2, subfamily B,
polypeptide 6 [human]

CYP2CB9 - cytochrome P450, family 2, subfamily C,
polypeptide 9 [human]

CYP2C19 - cytochrome P450, family 2, subfamily C,
polypeptide 19 [human]

CYP3A4 - cytochrome P450, family 3, subfamily A,
polypeptide 4 [human}]

GSTA2 - glutathione S-transferase alpha [human}]

UGT1A1 - UDP glucuronosyltransferase 1 family,
polypeptide A1 [human]

SLCO1B1 - solute carrier organic anion transporter
family, member 181 [human]

SULT2A1 - sullfotransferase family, cytosolic, 2A,

dehydroepiandrosterone (DHEA)-preferring, member

1 [human]

HNF4A - hepatocyte nuclear factor 4, cofactor for
CARand PXR

CAR and PXR response element

assay description example

transectivation multiplexed reporter geneassay?  ER

transactivation muitiplexed reporter geneassay?  ER

quantitative hts reporter gene assay””*° ER

cell-free competitive binding assay® ER

cell-free competitive binding assay® ER

cell-free competitive binding assay®! ER

transactivation multiplexed reporter gene assay”>  CAR

cell-free competitive binding assay® CAR

transactivation multiplexed reporter geneassay”?>  PXR

quantitative hts reporter gene assay””*° PXR

cell-free competitive binding assay® PXR

transactivation multiplexed reporter gene assay”>  CAR/PXR

transactivation multiplexed reporter geneassay?  CAR/PXR

quantitative hts reporter gene assay””*° CAR/PXR

gene expression assay in human CAR
hepatocytes (24 and 48 h readouts)®?

gene expression assay in human CAR
hepatocytes (24 and 48 h readouts)®

gene expression assay in human CAR
hepatocytes (24 and 48 h readouts)®

gene expression assay in human CAR
hepatocytes (24 and 48 h readouts)®?

gene expression assay in human CAR
hepatocytes (24 and 48 h readouts)®?

gene expression assay in human PXR
hepatocytes (24 and 48 h readouts)®

gene expression assay in human PXR
hepatocytes (24 and 48 h readouts)®?

gene expression assay in human CAR/PXR
hepatocytes (24 and 48 h readouts)®

gene expression assay in human PXR
hepatocytes (24 and 48 h readouts)®

gene expression assay in human CAR/PXR
hepatocytes (24 and 48 h readouts)®?

quantitative hts reporter gene assay””*° CAR/PXR

quentitative hts reporter gene assay®’®° CAR/PXR

Oct. 2018

of departure doses. We posit that BPADs could be used to
provide provisional estimates of permissible or acceptable ex-
posure levels for data poor chemicals, upon the basis of discover-
ing which pathways are significantly altered by a chemical and at
what concentration those perturbations occur in vitro, and then
using a PK model to estimate the external dose that would
produce the internal concentration that caused pathway pertur-
bation. Both the PD and PK estimates incorporate uncertainty
and variability and when combined yield a probability distribu-
tion for the pathway-altering dose. The BPADy is then
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calculated asalower percentile of this distribution, with emphasis
on its lower one-sided 95% confidence bound, the BPADLgg. We
have presented examples where BPADs and animal-based LEL
and NEL values were compared, and these have yielded inter-
esting insights, including the fact that BPAD values tend to be
below or at most a factor of 10 higher than the NEL/100.
HTRA can be compared with the currently used regulatory
testing paradigm for food use pesticides and other chemicals for
which extensive testing is required. (An altemative, and perhaps
more apt comparison is with data requirements for the large
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Figure 3. Comparisonof HTRABPAD distributionswith LEL and NEL values for liver hypertrophy fromanimal studies on the 14 conazole fungicides
in phase 1 of ToxCast. BPADsare calculated as described in the text. For each chemical, the black box gives the population-variability-derived (1%, 9%%)
confidence intervals about the median BPAD. The whiskers indicate uncertainty-derived 95% confidence intervals about the extremes of the variability
confidence interval. The BPADLg is indicated by a red circle; the LEL by a blue box; the NEL by a gray triangle; and the NEL/100 by a red triangle.
Estimated chronic exposure levels from food residues are indicated by vertical red lines. All values are in mg/kg/day.

number of data poor chemicals.) The traditional testing strategy
uses relatively high-dose animal tests one chemical at a time to
observe what toxic end points occur. These fests provide holistic
evidence of toxicity across many organsand over long time scales,
and are largely hypothesis free (or hypothesis generating). These
tests may then be followed up with more mechenistic studies to
understand the underlying besis of toxicity and to provide
information needed to better inform extrapolation from animal
to human efects and from high doses to typical low doses to
which humans will be exposed. With HTRA, we run hundreds to
thousands of chemicals in parallel, in human-based assays
corresponding to pathways for which there is previous evidence
of linkage with toxicity-related end points. Pathways are probed
one at a time, and an overall HTRA profile is built up from
multiple pathway-based tests.

The basic approach presented here can beextended inanumber
of ways, some of which are described below. A recent commentary
by Crump and colleagues** addressed some of these issues and
pointed out refated challenges, in particular with estimatingaltering
concentrations, performing PK modeling, and treating uncertainty
and variability. One particular issue they raise is the danger of
making the model too complex in order to better mimic the invivo
situation. Ve agree with this and emphsasize that our goal is not to
replace current testing strategies, but instead to developa new first
tier testing approach for data poor chemicals. By keeping the
framework relatively simple, the transparency of the approach is
fecilitated. This is especially important so that all stakeholders can
evaluatethe model. Extendingthis transparency,we believethat all
dataand software used in HTRA should be well documentedand
made public.

Defining biological pathways and linking them with adverse
effects is a key concept in the NRC Toxicity Testing in the 21st
Century report.’® The use of toxicity pathways has been widely
discussed over the past few vears, yet they remain an ill-defined
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concept. Oneissue is that biological pathways themselves are not
systematically defined, and a second is that there has not beena
concerted effort to organize information linking chemicals,
targets (genes, proteins), biological pathways, and their func-
tionally important modular components, key events, MOA, and
adverse effects. A database linking all of these types of informa-
tion together would allow data mining algorithms to find key
gene/ protein networks whose perturbation would bearisk factor
for toxicity. The ToxCast in vitro toxicity testing data, publicly
available via ToxCastDB® is an important step in linking
chemicals to the perturbation of biological pathways."*? Several
other public databases also contain parts of the puzzle, including
the Comparative Toxicogenomics Database (CTD)** and
PharmGKB,*” which link genes and chemicals; OMIM,* which
links genes and disease; KEGG'"*° and Pathway Commons,'®
which contain gene-pathway information; and the EPA Aggre-
gated Computational Toxicology Resource (ACToR) X!
DSSTox.? and ToxRefDB,*>**%3°* which link chemicals and
adverse effects. An important piece which is lacking is a database
of chemicalsand their toxicity MOA. EPA’'s ToxCast program is
constructing a database and tools to link all of this data
together,? but this effort will require help froma much broader
community.

One way 10 gpproach this problem is to decide when we can
equate in vitroactivity with in vivo adversity. In some cases (which
we call Class 1), the link between in vitroactivity and adversity is
clear (eg.,cholinesteraseactivity). Thereis asingle target which, if
significantly perturbed, can lead directly to undesirable phenotypic
changes. Class 1 could be further subdivided. For instance, Class 1a
would be a pathway that is normally off and gets triggered by an
exogenous agent (eg., genotoxicity); wheress a Class 1b pathway
would normallybeactive, but its level is modulated by anexogenous
agent, and when that is beyond the realm of homeostesis, damege
occurs. Next is an intermediate case (Class 2), where there is an
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association (statistical or otherwise) between perturbations of a
pathway and some disease outcome, but the details and causal
linkege are not clear (eg., PPAR pathway perturbations and potential
linkage with hurman disease). Finally, there are many other targets
and pathways (Class 3), for which no clear linkage between in vitro
activity and adverse In Vivo outcomes is currently known.

Before we can make widespread use of this type of approach,
there area number of challenges that need to be addressed, five of
which are discussed below.

Estimating Concentrations at Which Pathways Are Per-
turbed. We use the results of in vitro assays to determine if a
chemical perturbs a pathway and if so, over what concentration
range. Because pathways form complex networks that can
contain feed-forward and feedback loops, we need to probe the
pathway at multiple points because any single assay may missan
important effect. In addition, all assay technologies yield some
fraction of false positives and negatives so that it is best to probe
pathways using assays from a variety of technologies. Theseand
other factors need to be considered in order to develop robust
criteria for determining when apathway of interest issignificantly
perturbed, and determining appropriate variability and uncer-
tainty metrics. Our CAR/PXR example is one case where it is
possible to refine the estimate of the BPAC by integrating overall
of the assays that map to the pathway. A recent publication
describes one approach for integrating several nuclear receptor
pathways associated with rodent liver tumors.™ We are investi-
gating a number of other ways to do this, using statistical,
Bayesian methods, pathway-level modeling, and agent-based cell
simulations in “virtual tissues” in our Virtual Liver and Virtual
Embryo projects. Another issue is that some classes of environ-
mental chemicals are not currently amenable to HTS analysis, in
particular, volatile chemicals and small molecular weight chemi-
cals that are not expected to directly interact with cellular
mecromolecules in a pharmacologically relevant fashion.

PKModeling of in Vitro Concentration to In Vivo Dose. We
described one method for estimating the external dose that is
required 1o yield aspecified plasma concentration of a chemical,
but there are other PK modeling approaches that could be used.
Special cases that need to be dealt with include chemicals that
bioaccumulate fo a significant extent; chemicals that act acutely
or through effects at peak concentrations; chemicals that cause
toxicity in compartments where there is no full partitioning with
plasma (fetus, brain, testis, and milk); analysis of chemicals for
which active transport is important; and chemicals for which
there is significant nonhepatic metabolism. We incorporate
population variability into our current model in an gpproximate
way, but uncertainty is not well captured.

Biotransformation and Other Properties in Vitro Systems
Lack. Amgjor criticism of using in vitroassays to predict chemical
toxicity is that cellsare not tissues, organsor people, i.e. they lack
many of the essential interactions that are required to trigger key
events inan MOA, or which could prevent keyevents frombeing
triggered through adaptive responses. Most current HTS assays
do not include the possibility for biotransformation, which
means that we can make statements about the activity of a parent
molecule, but not any potentially more or less toxic metabolites.
Technologies are being developed to address this issue™ but are
not currently robust enough to yield relevant results. Most assays
do not include multipie cell types and therefore do not incorpo-
rate complete paracrine signaling pathways (e.g., those that are
needed for the development of an immune response). Thereare
a variety of emergent properties that one will only see with
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mixtures of cell types, appropriate extracellular matrices, and
three-dimensional geometries. Many cell-based assays are carried
out in immortalized cell lines that have become highly adapted to
growth in vitro and no longer represent their tissue of origin
(although use of primary cells for in vitro assays is being
incressingly used). Cell-based assays are short-term (hours to
days) and cannot be used to directly address the effect of chronic
exposures, for instance through accumulation of mutations. All of
these factors lead to uncertainty in our BPAD estimatesand need
to be accounted for in some way.

Relevance of inVitro Activity to In Vivo Toxicity. Therearea
variety of issues related to the extrapolation from in vitro to
invivoactivityand in particular, to adversity. These include issues
related to chronic exposures (months or years) in animal studies
as opposed to the hours or days for exposure in the in vitro
systems. Another has to do with life-stagesensitivity. A related set
of issues have to do with adaptive responses which may occur in
the intact animal and over long times, but which are not
manifested in a short-time cell assay. We cannot answer all of
these here, but restate the basic premise of using invitroassays in
toxicology, namely that for certain disease types, direct perturba-
tion of atarget or pathway isa necessary condition for the disease
to occur. This is the basis of the notion that there are key
molecular initiating events in toxicity modes of action.” Because
these molecular actions are necessary, but not sufficient, in vitro
assays can be overly sensitive in predicting whether a chemical
can lead to adversity, but can give specific information on the
modes of action that could be driven by chemical exposure. In the
ToxCast program, we are using statistical methods to link path-
way-level perturbations with adverse outcomes. This is done by
using in vitro and in vivo toxicity data on common sets of
chemicals in the ToxCast™ and ToxRefDB***** data sefs,
and finding statistical associations. We then follow-up on strong
associations by building a case for biological plausibility by using
external validation data (chemicals not used in the initial
association analysis) and detailed mechanistic information from
the literature. In the case that multiple pathways linked to agiven
adverse effect are perturbed by a chemical (generating multiple
BPADs), we would use the lowest one as the starting point for
HTRA, in thesame way that the most sensitiveadverseend point
seen in an animal study is often used in setting a LOAEL.

Dealing with Uncertainties and Variability. We have al-
ready mentioned the need to better estimate levels of uncertainty
and variability in the modeled PD and PK parameter values. Of
note are recent papers that measure the population variability of
response 1o chemicals in vitro using a collection of genetically
characterized mouse strains and hurman cell lines**® There is
additional uncertainty involved in the models themselves that
should be considered and aneed to optimize theway the separate
uncertainty and variability distributions are integrated. The work
of Rusynand co-workers isanexampleof how one can use invitro
data derived from testing the HapMap cell lines to assess PD
population variability. One could use their approach to examine
variability, in this case genetic, at the pathway level

To conclude, our initial goal is to developatool for performing
rapid evaluations of the potential hazard for data poor chemicals
and for setting priorities among those for more detailed testing.
One can envision variants of this approach that make use of
chemical structure combined with in vitro data to estimate risk
across classes of chemicals in the same way that categories are
currently evaluated. It should also be possible to formulate
methods to make first-order estimates of BPADs for mixtures.
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This HTRA approach lends itself to a tiered testing approach
which would not go straight from a finding of high predicted
hazard in HTRA to a recommendation of extensive animal
testing. Furthermore, this HTRA approach is consistent with a
new EPA program advancing the next generation of risk assess-
ment (NexGen) and proposing a tiered approach 1o risk
assessments.”’ In one possible tiered testing approach, a large
set of chemicals would be analyzed using some variant of BPAD-
HTRA. Thosewith the lowest BPAD values, and which therefore
potentially pose a risk at the lowest exposures, would go into a
second, still in vitro tier. The second tier would first include the
use of more complex and in depth in vitro analysis, using
additional assays in the implicated biological pathways, diferent
cell types, and possibly model organism tests. Any toxicity-
related data from structural analogues with of the Tier 1
chemicals should also be included. The second tier should also
estimate potential exposures. If the combined, Tier 1 - Tier 2
BPADL approaches exposure levels likely to be encountered in
the environment, then the chemical would become a candidate
for even more extensive testing and modeling using in silioo,
in vitro, and in vivo approaches.

An alternative track to be followed for chemicals with high
apparent risk in Tier 1,2 is to consider replacements. Thiswould
follow the green chemistry/sustainability approaches being de-
veloped by the EPA.®% [f there is a functionally equivalent
chemical (from an end-use standpoint) with a significantly
greater BPAD, and no significant sustainability liabilities, then
this analysis could help guide a replacement strategy.
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